Towards Convolutional Neural Networks Compression via Global Error Reconstruction
نویسندگان
چکیده
In recent years, convolutional neural networks (CNNs) have achieved remarkable success in various applications such as image classification, object detection, object parsing and face alignment. Such CNN models are extremely powerful to deal with massive amounts of training data by using millions and billions of parameters. However, these models are typically deficient due to the heavy cost in model storage, which prohibits their usage on resource-limited applications like mobile or embedded devices. In this paper, we target at compressing CNN models to an extreme without significantly losing their discriminability. Our main idea is to explicitly model the output reconstruction error between the original and compressed CNNs, which error is minimized to pursuit a satisfactory rate-distortion after compression. In particular, a global error reconstruction method termed GER is presented, which firstly leverages an SVD-based low-rank approximation to coarsely compress the parameters in the fully connected layers in a layerwise manner. Subsequently, such layer-wise initial compressions are jointly optimized in a global perspective via back-propagation. The proposed GER method is evaluated on the ILSVRC2012 image classification benchmark, with implementations on two widely-adopted convolutional neural networks, i.e., the AlexNet and VGGNet-19. Comparing to several state-of-the-art and alternative methods of CNN compression, the proposed scheme has demonstrated the best rate-distortion performance on both networks.
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملCompression Artifacts Removal Using Convolutional Neural Networks
This paper shows that it is possible to train large and deep convolutional neural networks (CNN) for JPEG compression artifacts reduction, and that such networks can provide significantly better reconstruction quality compared to previously used smaller networks as well as to any other state-of-the-art methods. We were able to train networks with 8 layers in a single step and in relatively shor...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملMultiple Description Convolutional Neural Networks for Image Compression
Multiple description coding (MDC) is able to stably transmit the signal in the un-reliable and non-prioritized networks, which has been broadly studied for several decades. However, the traditional MDC doesn’t well leverage image’s context features to generate multiple descriptions. In this paper, we propose a novel standard-compliant convolutional neural network-based MDC framework in term of ...
متن کاملFast and Accurate Single Image Super-Resolution via Information Distillation Network
Recently, deep convolutional neural networks (CNNs) have been demonstrated remarkable progress on single image super-resolution. However, as the depth and width of the networks increase, CNN-based super-resolution methods have been faced with the challenges of computational complexity and memory consumption in practice. In order to solve the above questions, we propose a deep but compact convol...
متن کامل